Projects / AI Innovation Challenge

Identifying Mosquito Species Using Computer Vision

Challenge Completed!


Featured Image

The team applied instance segmentation to detect body parts of Mosquito species.

The problem

A vector is a living organism that transmits an infectious agent from an infected animal to a human or another animal. Vectors are frequently arthropods, such as mosquitoes, ticks, flies, fleas, and lice.

  • 700,000 people die each year from vector-borne diseases.
  • 17% of all infectious disease cases are vector-borne diseases.
  • 80% of the world’s population is at risk for one or more vector-borne diseases.

Vectech’s current methods for species classification are based on images gathered with MosID, a custom imaging device designed for consistent, high-quality mosquito imaging, which is fed to a Convolutional Neural Network (CNN) based system. We want Omdena to help us develop a mosquito body part segmentation and identification method, to help us determine what parts of the mosquito are visible and intact in the image. This enables more advanced computer vision methods, serving as highly valuable prior information for the CNN, and may be paired with entomological taxonomic information for species identification. These advanced methods are required for mosquito surveillance products because captured mosquitoes from the wild are often very beaten up, missing scales, wings, legs, etc., which sometimes affects whether that mosquito can be accurately identified to its species.

The project outcome 

The team applied various data augmentation techniques and explored different machine learning models for instance segmentation. The solution segments different body parts of the mosquito visible in the image. For example, identifying the specific portions of the image that are the legs, abdomen, wings, and other important body parts of the mosquito. 

Identifying Mosquito Species Using Computer Vision

Sample prediction. Source: Omdena

First Omdena Project?

Join the Omdena community to make a real-world impact and develop your career

Build a global network and get mentoring support

Earn money through paid gigs and access many more opportunities



Your Benefits

Address a significant real-world problem with your skills

Get hired at top companies by building your Omdena project portfolio (via certificates, references, etc.)

Access paid projects, speaking gigs, and writing opportunities



Requirements

Good English

A very good grasp in computer science and/or mathematics

Student, (aspiring) data scientist, (senior) ML engineer, data engineer, or domain expert (no need for AI expertise)

Programming experience with Python

Understanding of Deep Learning, Machine Learning and Computer Vision



This challenge has been hosted with our friends at
Logo


Application Form
Thumbnail Image
Enhancing Global Mapping Through AI
Thumbnail Image
Mapping Seagrass Meadows with Satellite Imagery and Computer Vision
Thumbnail Image
Shoplifting Detection in Retail Stores Using Computer Vision and Machine Learning

Become an Omdena Collaborator

media card
Visit the Omdena Collaborator Dashboard Learn More