Projects / Local Chapter Challenge

Preventing Malaria Infections Through Topography and Satellite Image Analysis

Project completed!

Omdena Featured image

Making malaria elimination possible through AI. 

Malaria is a mosquito-borne disease, claiming over 400,000 lives each year, mainly children under 5. By targeting the water bodies where mosquitoes lay eggs, the disease can be controlled or even eliminated completely.

Combining satellite images, topography data, population density, and other data sources a team of 40 AI changemakers built an algorithm that identifies the areas in which stagnant water bodies likely exist. The model helps to identify breeding sites quicker and more accurately.

AI Malaria

Highlighted Grids have a higher risk of containing water bodies


The project falls under the UN’s Sustainable Development Goal 3, which is to“ end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases” by the year 2030. Given a region, the task was to automatically identify areas with water bodies. To be able to cater to a large area like Ghana or Kenya, governments and other entities need to be able to direct resources to the most susceptible regions in the most cost-efficient manner. The time is limited since the water bodies need to be analyzed before the wet season arrives, leading to a rise in mosquito breeding.

The dataset for this project was particularly for the Ghana and Amhara regions. The project partner Zzapp Malaria was surveying these regions during the project phase hence the data came in periodic batches.

Below you can watch how the app of Zzapp Malaria works. For more details on the challenge read this case study.

Project completed!

Your benefits

Working with world-class mentors and domain experts to acquire real-world experience

Making international friends in a fast-growing supportive community of collaborators

Boosting your technical skills, problem-solving capabilities, and collaboration skills

Building your personal brand and publishing your own articles on our website and blog

Receiving certificates of participation and references to accelerate your career


Good English

A good/very good grasp in computer science and/or mathematics

Student, (aspiring) data scientist, AI engineer, data engineer, domain expert (no need for AI expertise)

Programming experience with C/C++, C#, Java, Python, Javascript or similar

Understanding of ML and Deep learning algorithms

This project has been hosted with our friends at

Application Form

Related Projects

media card
CanopyWatch - Enhancing Deforestation Monitoring and Conservation in the Congo Basin using Machine Learning
media card
Streamline the Identification of Suitable Sites for Solar Panel Installations in UK
media card
Mapping Seagrass Meadows with Satellite Imagery and Computer Vision

Become an Omdena Collaborator

media card
Visit the Omdena Collaborator Dashboard Learn More